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Figure 1: Although all image patches on the left are just noise, when we show thousands of them to online workers and ask
them to find ones that look like cars, suddenly a car emerges in the average, shown on the right. This noise-driven method is
based on well known tools in human psychophysics that estimates the decision boundary that the human visual system uses
for recognition. In this paper, we explore how classifiers acquired from human imagination can be transferred into a machine.

Abstract
The human mind can remarkably imagine objects that it

has never seen, touched, or heard, all in vivid detail. Moti-
vated by the desire to harness this rich source of information
from the human mind, this paper investigates how to extract
classifiers from the human visual system and leverage them
in a machine. We introduce a method that, inspired by well-
known tools in human psychophysics, estimates the classi-
fier that the human visual system might use for recognition,
but in computer vision feature spaces. Our experiments are
surprising, and suggest that classifiers from the human vi-
sual system can be transferred into a machine with some
success. Since these classifiers seem to capture favorable
biases in the human visual system, we present a novel SVM
formulation that constrains the orientation of the SVM hy-
perplane to agree with the human visual system. Our results
suggest that transferring this human bias into machines can
help object recognition systems generalize across datasets.
Moreover, we found that people’s culture may subtly vary
the objects that people imagine, which influences this bias.
Overall, human imagination can be an interesting resource
for future visual recognition systems.

1. Introduction
“Logic will get you from A to Z; imagination will
get you everywhere.” — Albert Einstein

Computers routinely beat the human brain on challenges
with logic and calculation speed. But, when it comes to ob-

ject recognition, humans are still the state-of-the-art. What
is the key difference between human recognition and ma-
chine recognition?

One answer is that the best object recognition systems
today are unable to imagine objects that they have never en-
countered. However, the human mind can effortlessly imag-
ine objects that it has never seen, touched, or heard. Even
more remarkably, humans can do this in any color, orienta-
tion, deformation, put upside down, in and out of context,
all in vivid detail.

In this paper, we seek to transfer the mental images of
what a human can imagine into an object recognition sys-
tem. We combine the strengths of two approaches: state-of-
the-art features in computer vision [7, 23] with a method in
human psychophysics [2] that estimates the decision bound-
ary that the human visual system uses for recognition.

Consider what may seem like an odd experiment: we
sample white noise in a visual feature space from a standard
normal distribution. What is the chance that this sample is
a car? Fig.1a visualizes some samples using feature inver-
sion [38] and, as expected, we see noise. But, let us not
stop there. We next generate one hundred thousand points
from the same distribution, and ask workers on Amazon
Mechanical Turk to classify each sample as a car or not.
Fig.1c shows the average of visual features that workers
believed were cars. Although our dataset consists of only
white noise, a car emerges!

While sampling noise may seem unusual to computer
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vision researchers, a similar procedure, named classifica-
tion images, has gained popularity in human psychophysics
[2] for estimating the template the human visual system in-
ternally uses for recognition [20, 3]. In the procedure, an
observer looks at random noise and indicates whether they
perceive a target category. After a large number of trials,
psychophysics researchers can apply basic statistics to ex-
tract the internal template the observer used for recognition.
We discovered that a similar approach can be used to build
a coarse object recognition system that originated from peo-
ple’s imagination.

Motivated by the observation that human visual system
is a rich source of information, this paper investigates the
scientific question whether visual classifiers acquired from
human imagination can be leveraged computationally. In-
spired by classification images, we introduce a method to
estimate imaginary classifiers from the human mind, but in
a feature space that is compact and discriminative for com-
puters. To our knowledge, we are the first to extract classi-
fiers from the human visual system in computer vision fea-
ture spaces. We then present a novel SVM formulation that
integrates knowledge from the human visual system by con-
straining the SVM solution to be oriented close to the imag-
inary classifier. Our experiments are surprising, and suggest
that classifiers from the human mind might be transferrable
into a machine.

In addition, we found that imaginary classifiers are use-
ful in two particular computer vision applications. Firstly,
since these classifiers do not depend on real images, we
can build recognition systems in situations where it is diffi-
cult to collect data. Our results suggest that it is possible
to recognize objects in images in the wild without train-
ing on any real images. Secondly, since imaginary classi-
fiers are estimated only by humans looking at noise, they
inherit biases from the human visual system. Our experi-
ments suggest that the bias from the human visual system
is favorable, and can improve generalization performance
across datasets. Overall, these experiments hint that human
imagination can be an interesting resource for future visual
recognition systems.

1.1. Related Work

This paper acquires a recognition system from the hu-
man mind by combining several popular methods. While
each individual method is standard, their combination is
novel. We briefly review the related work in both human
and computer vision.

Mental Images: Our methods build upon work to extract
mental images from a user’s head for both general objects
[16] and faces [26]. However, our work differs because we
estimate mental images in state-of-the-art computer vision
feature spaces, which allows us to integrate the mental im-
ages into an object recognition system.

Human-in-the-Loop: The idea to transfer classifiers
from the human mind into object recognition is inspired by
many recent works that puts a human in the computer vi-
sion loop [5, 10, 29], trains recognition systems with active
learning [36, 34], and studies crowdsourcing [37, 32, 40].
The primary difference of these approaches and our work is,
rather than using crowds as a workforce, we want to extract
classifiers from the worker’s minds using methods rooted in
human psychophysics.

Transfer Learning: We build upon methods in transfer
learning to incorporate priors into learning algorithms. A
common transfer learning method for SVMs is to change
the max-margin regularization term ||w||22 to ||w − c||22
where c is the prior [31]. However, this imposes an prior
on the norm of of w. In our case, since the imaginary clas-
sifier does not provide an additional prior on the norm, we
introduce a novel SVM formulation that constrains only the
orientation of w to be close to c. Our approach extends sign
constraints on SVMs [12], but instead enforces orientation
constraints.

Deep Learning: There is a large body of work study-
ing deep learning [24, 23], which hopes to build models
that mimic neuron activations in the human brain. While
our work is also inspired by biological vision, we are only
interested in estimating the classifier parameters for very
specific recognition tasks.

Human Psychophysics: Finally, our ideas extend clas-
sification images [20, 3], a tool in psychophysics to es-
timate decision boundaries that the human visual system
uses. Firstly, while classification images have been mostly
restricted to images and audio, we are the first, to our knowl-
edge, to apply it to feature spaces in computer vision. Sec-
ondly, our approach uses only noise to estimate classifiers.
Unlike classification images, we do not use any real images.
We capitalize on the ability of people to discern visual ob-
jects from random noise in a systematic manner [17].

2. Acquiring Classifiers
In this section, we describe how to acquire classifiers

from the human visual system. We first review a popular
method in human psychophysics for performing this task.
Then, we adopt it for use in a computer.

2.1. Classification Images

We first review classification images, a popular method
in human psychophysics that estimates the internal template
that the human visual system uses for recognition [20, 3].
The goal is to approximate the template c ∈ Rd that the
human visual system uses for recognition.

The intuition behind classification images is simple, but
powerful. We wish to discover how a human observer dis-
criminates between two classes A and B, e.g. male vs. fe-
male faces, or chair vs. not chair. Suppose we have real
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images a ∈ A ⊆ Rd and b ∈ B ⊆ Rd. If we sample
white noise ε ∼ N (0d, Id) and ask an observer to indicate
the class label for a + ε, most of the time the observer will
answer classA. However, there is a chance that εmight ma-
nipulate a to cause the observer to mistakenly label a+ ε as
class B.

The key insight into classification images is that, if we
perform a large number of trials, then we can estimate a de-
cision function f(·) that discriminates between A and B,
but makes the same mistakes as the observer. Since f(·)
makes the same errors, it provides a good model for the in-
ternal decision function that the observer uses. By analyz-
ing this model, we can then gain insight into how the human
visual system discriminates between A and B.

If we assume that the human visual system uses the lin-
ear decision boundary of the form f(x; c) = cTx, then
[27] shows that the classification image c with the optimal
signal-to-noise ratio is:

c = (µAA + µBA)− (µAB + µBB) (1)

where µPQ ∈ Rd is the average image where the original
was class P but the observer predicted Q.

Is it reasonable to assume that classification images
should be linear? Although there is overwhelming evidence
that object recognition in the human brain is nonlinear, a lin-
ear classification image is reasonable because we only seek
an approximation of the human decision boundary. More-
over, while nonlinear models are possible, they require sig-
nificantly more trials to estimate, which is expensive, and
in practice we see good results with linear models. We do,
however, wish to point out promising efforts that study non-
linear classification images [28].

2.2. Imaginary Classifiers

Since psychophysics researchers are interested in under-
standing how the human brain functions, they want to ex-
tract classifiers from the human visual system that are inter-
pretable. Consequently, they build classification images in
pixel space for geometric shapes or faces. However, we are
interested in extracting classifiers to use in a computer. In-
spired by classification images, we present an approach that
acquires classifiers from the human visual system, but in the
same feature spaces as computer vision systems. Our new
method, which we refer to as imaginary classifiers, uses two
key ideas.

Firstly, we captialize on recent work in feature inver-
sion [38, 39, 8, 21]. Rather than generating noise in pixel
space, we generate noise in feature space. We then invert
the noise features back to an image and ask humans to label
the feature visualization. Since machines understand fea-
tures and humans understand visualizations, we are able to
build a classifier that makes similar recognition mistakes as
humans, but in a space that is discriminative for computers.

Secondly, we found that humans are surprisingly good at
imagining objects in visualizations of feature space noise.
When we instruct people to label visualizations of just white
Gaussian noise (with no real images), people frequently find
white noise that looks like objects. Feature descriptors of-
ten have structure (e.g., encodings of gradients or colors)
that likely causes white noise in feature space to invert to
images that look like objects. Although people are incorrect
when they label pure noise as an object, they are providing
information about how the human visual system discrimi-
nates objects in computer vision feature spaces.

We propose to build imaginary classifiers by combining
feature inversion with people’s ability to discern objects in
pure noise. We first sample noise from a zero-mean, unit-
covariance Gaussian distribution x ∼ N (0d, Id). We then
invert the noise feature x back to an image φ−1(x) where
φ−1(·) is the feature inverse. By instructing people to in-
dicate whether a visualization of noise is a target category
or not, we can build a linear classifier c̃ ∈ Rd that approxi-
mates the decisions of their visual system:

c̃ = µA − µB (2)

where µA ∈ Rd is the average, in feature space, of white
noise that workers incorrectly believed was an actual object,
and similarly µB ∈ Rd is the average of noise that workers
correctly labeled as noise. Since we sample white Gaussian
noise, Eqn.2 can be interpretted as an LDA classifier [18]
over labeled noise where the covariance is identity, Σ = I .1

Moreover, observe Eqn.2 is a special case of the original
human psychophysics Eqn.1 where the background class B
is white noise and the positive class A is empty. Instead, we
rely on humans to hallucinate objects in noise to form µA.

Since we average noise in feature space instead of pixel
space, we have two advantages over standard classifica-
tion images. Firstly, imaginary classifiers are in a feature
space that is compact and discriminative, which allows us
to plug the classifier into a machine. Secondly, since we
build imaginary classifiers with only white Gaussian noise
and no real images, our approach is immune to many is-
sues in dataset bias [35]. Instead, imaginary classifiers in-
herit the biases present in the human visual system, which
we suspect provides advantangeous signals about the visual
world.

We were able to estimate c̃ with one hundred thousand
trials. We picked an aspect ratio appropriate for our tar-
get category, sampled one hundred thousand points in fea-
ture space from the standard normal multivariate distribu-
tion, and inverted each sample with HOGgles [38]. We then
put each visualization on Amazon Mechanical Turk [32]
and instructed workers to indicate whether they see the tar-
get category or not. Since we found that the interpretation

1We tried training other classifiers too (such as SVM), but we did not
see any advantage in our experiments.
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Car Television Person Bottle Fire Hydrant

CNN

HOG

Figure 2: We visualize some decision boundaries acquired from the Mechanical Turk workers’ minds. Although they are
blurred, in many cases significant detail can be observed. Notice that the car classifier captures a darker road below the car,
and a lighter sky towards the top. The television shows a rectangular structure, the person mimics a pedestrian, and the valves
can be seen in the fire hydrant.

of noise visualizations depends on the scale, we show the
worker three different scales. We paid workers 10¢ to label
100 images, and the workers were fast, often solving the
entire one hundred thousand images in a few hours. Our ex-
periments were affordable, with each classifier only costing
around $100 to build. In order to assure quality, we occa-
sionally gave workers an easy example to which we knew
the answer, and only retained work from workers who per-
formed well above chance. We only used the easy examples
to qualify workers, and discarded them for computing the
final classifier.

Surprisingly, although subjects are classifying zero-
mean, identity covariance white Gaussian noise, objects
suddenly emerge after many trials. We visualize some of
the imaginary classifiers in Fig.2. In many cases, we can
observe significant detail. For example, in the car classifier,
we can clearly see a vehicle-like object in the center sitting
on top of a dark road and light sky. The television clearly
shows a rectangular structure, and the fire hydrant reveals a
red hydrant with two arms on the side.

3. Experiments on Imaginary Classifiers

There is a large class of visual objects that humans can
imagine, but they have never seen. In order to explore the
extent that human imagination can play a role in computer
vision, we want to scientifically understand how well we
can acquire classifiers from the human visual system and
leverage them computationally. Hence, we will evaluate
how well we can extract imaginary classifiers by quantify-
ing their ability to discriminate and recognize objects.

3.1. Experimental Setup

We evaluate our methods on object classification. We
assume object localization is given and the task is to pre-
dict the category of each window. We conduct our experi-
ments on the PASCAL VOC 2011 dataset [13], evaluating
against the validation set.2 We report performance as the
average precision on a precision-recall curve. We show re-
sults for two sets of features: HOG [7] and the last con-
volutional layer (pool5) of a convolutional neural network
(CNN) trained on ImageNet [23, 9]. We use the Felzen-
szwalb et al. implementation of HOG [15] and Decaf for ex-
tracting CNN features [11]. We trained inversions for both
features with paired dictionary learning [38]. All classifi-
cation images are estimated on Amazon Mechanical Turk
with 150, 000 trials.

3.2. Evaluation

The results in Fig.3 suggest that our imaginary classi-
fiers are capturing some signal from the human visual sys-
tem. Although the classifiers are estimated using only white
noise, in nearly every case the imginary classifiers are sig-
nificantly outperforming chance. The delta in AP is occa-
sionally large, with performance on person doubling and
television performance increasing an order of magnitude.3

These results suggest that we are able to acquire some sig-
nal from the human visual system and start to leverage it

2We added 63 annotated fire hydrants to the dataset for reasons that
will become clear later.

3Although most researchers walk past a fire hydrant every day, they
are not annotated in any major recognition dataset, including ImageNet.
However, since imaginary classifiers do not require datasets, we are still
able to recognize them!
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Figure 3: We show the average precision (AP) for object
classification on PASCAL VOC 2011 using the classifi-
cation image. Even though the classification image was
created without a dataset, it performs significantly above
chance in nearly every case (green). If a machine learning
algorithm were trained without data, the best it could do is
chance.

computationally.
Moreover, the misclassifications for the imaginary clas-

sifiers are often sensible. Fig.4 shows the class confusions
for the top classification for each classifier. Notice that cars
are frequently confused with other vehicles, and bottles are
commonly confused with people. We hypothesize that fu-
ture work in building higher resolution classifiers will re-
solve some of these issues. The number of noise trials
needed to estimate a imaginary classifier is also feasible,
making the method affordable. Fig.5 shows performance
versus the number of noise trials for a few categories. In
many cases, 10, 000 positive trials is enough to estimate a
classifier. Performance does not appear to have yet satu-
rated, suggesting that better classifiers can be created with
more trials.

We note that one potential concern in our experiments is
that the CNN features are trained to discriminate on Im-
ageNet [9] LSVRC 2012, and hence had access to data.
To address this concern, we have shown results for HOG
as well, which is a hand-crafted feature. Additionally, we
showed results for categories that the CNN network did not
see during training (people and fire hydrants).

3.3. Analysis

Our experiments indicate that imaginary classifiers con-
tain some discriminative power. By analyzing what the clas-
sifier is using for discrimination, we can gain insight into
how the human visual system recognizes objects in com-
puter vision feature spaces.

Our results suggest that shape is important for the imagi-
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Figure 4: We plot the class confusions for each imaginary
classifier for top classifications for CNN features. We show
only the top 10 classes for visualization. Notice that many
of the confusions are semantically meaningful, e.g. the clas-
sifier for car tends to retrieve vehicles, and the fire hydrant
classifier commonly mistakes people and bottles.
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Figure 5: We plot object classification performance on PAS-
CAL VOC with CNN features versus number of positive
noise trials. As the number of trials increase, performance
increases as well. Our results suggest that performance has
not yet saturated for many categories. Error bars show stan-
dard deviation over 10 random samples.

nary classifier to discriminate in CNN feature space. Notice
how the top classifications in Fig.6 tend to share the same
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Figure 6: We show some of the top classifications from the
imaginary classifiers estimated with CNN features.

rough shape by category. For example, the classifier for
person finds people that are upright, and the television clas-
sifier fires on rectangular shapes. The confusions in Fig.4
confirm these findings since bottles are often confused as
people, and cars are confused as buses. Moreover, the vi-
sualization of the classifers in Fig.2 attempts to show the
canonical shape that the classifier has learned. Although the
visualization is blurry, oftentimes one can see strong shape
details, such as the valves appearing in the fire-hydrant. In-
deed, shape seems to be important.

In addition to shape, some imaginary classifiers appear
to rely on color as well. Fig.6 suggests that the classifier
for fire-hydrant correctly favors red objects, which is evi-
denced by it frequently firing on people wearing red clothes.
The bottle classifier, although, seems to be incorrectly bi-
ased towards blue objects, which contributes to its poor per-
formance. We suspect that the Mechanical Turk workers
likely subconsciously biased the bottle classifier towards
blue. While color is not as important as shape, color ap-
pears to be useful for humans to recognize objects in noise.

These results suggest together that the human visual sys-
tem encodes some bias towards the shape and color of ob-
jects. Since humans are the best object recognition agents,
we suspect that this bias is favorable. In the remainder of
this paper, we will explore how we can use these biases from
the human visual system.

4. Learning with Imaginary Classifiers

Our experiments suggest that imaginary classifiers pro-
vide a good template for the features that the human vi-
sual system finds discriminative for recognition between
two classes. Since the human visual system is the best ob-
ject recognition system today, we suspect that integrating
imaginary classifiers with machine learning can be power-
ful. In this section, we present a novel SVM formulation
that incorporates knowledge from the human visual system
by constraining the SVM hyperplane to have a similar ori-
entation to the imaginary classifier.

c
w

cos-1(θ)

Figure 7: We visualize the conic
constraint on the SVM solution w.
The feasible space for the solu-
tion is the grayed hypercone. The
SVM solution w is not allowed
to deviate from c̃ by more than
cos−1(θ) degrees.

4.1. SVM with Orientation Priors

Let xi ∈ Rm be a training point and yi ∈ {−1, 1} be its
label for 1 ≤ i ≤ n. The SVM seeks a separating hyper-
plane w ∈ Rm with a bias b ∈ R that maximizes the margin
between positive and negative examples. We wish to add
the constraint that the SVM hyperplane w must be at least
cos−1(θ) degrees away from the imaginary classifier c̃:

min
w,b,ξ

λ

2
wTw +

n∑
i=1

ξi (3a)

s.t. yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0 (3b)

θ ≤ wT c̃√
wTw

(3c)

where ξi ∈ R are the slack variables, λ is the regularization
hyperparameter, and Eqn.3c is the orientation prior such
that θ ∈ (0, 1] is the maximum angle that the w is allowed
deviate from c̃. Note that we have assumed, without loss of
generality, that ||c̃||2 = 1. Fig.7 shows a visualization of
this orientation prior.

4.2. Learning

Optimizing Eqn.3 directly seems to be challenging due
to the constraint in Eqn.3c. However, it is possible to write
the above objective as a conic program. Since conic pro-
grams are convex by construction, we can then optimize it
using off-the-shelf solvers.

We rewrite Eqn.3c as
√
wTw ≤ wT c̃

θ and introduce an
auxiliary variable α ∈ R such that

√
wTw ≤ α ≤ wT c̃

θ .
Substituting these constraints into Eqn.3 and replacing the
SVM regularization term with λ

2α
2 leads to the conic pro-

gram:

min
w,b,ξ,α

λ

2
α2 +

n∑
i=1

ξi (4a)

s.t. yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0 (4b)

√
wTw ≤ α (4c)

α ≤ wT c̃

θ
(4d)

Since the minimum occurs iff a2 = wTw, Eqn.4 is equiva-
lent to Eqn.3, but in a standard conic form.
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Figure 8: We plot the influence of θ on car classification on
PASCAL 2011 with CNN features. When there is only one
positive training example available, the imaginary classifier
alone (θ = 1) obtains better performance (blue). However,
when there is a medium amount of training data (5 to 100)
positives, gently incorporating the imaginary classifier (θ ≈
0.7) into an SVM boosts performance (green, red). Error
bars show standard deviation over 5 random trials.

We optimize Eqn.4 using the interior point method. In
our experiments, we use MOSEK [1]. Optimization took
an hour on typical sized problems, but since we use a gen-
eral purpose solver, improving the implementation will sig-
nificantly increase run time performance. We note a simi-
lar SVM formulation was introduced in [12], but they only
impose sign—not orientation—constraints on the weight
vector. Moreover, observe that removing Eqn.4d makes it
equivalent to the standard SVM.

cos−1(θ) specifies the angle of the cone. In our exper-
iments, we found 30◦ to be reasonable. While this angle
is not very restrictive in low dimensions, it becomes much
more restrictive as the number of dimensions increases. The
probability of a randomly sampled w satisfying the rotation
constraint can be determined by calculating the surface area
of the spherical cap formed with the cone, then dividing it
by the surface area of the whole sphere [25]. The probabil-
ity of a random w satisfying the angle constraint for 20◦ in
3D is 0.03, but drops to O(10−48) in 100 dimensions.

4.3. Transferring Human Bias into Recognition

Since we believe the bias in the human visual system is
favorable, we are interested in transferring this bias into ob-
ject recognition. To accomplish this, we can train an SVM
and impose the imginary classifier as an orientation prior.

Using the same evaluation procedure as the previous sec-
tion, we compare three approaches: 1) a single SVM trained
with only a few positives and the entire negative set, 2) the
same SVM with orientation priors on the imaginary classi-
fier, and 3) the imaginary classifier alone. We then follow
the same experimental setup as before. We show perfor-
mance on car classification with CNN features in Fig.8 for
varying θ to see the influence of the imaginary classifier

on the SVM. Note that with one positive training example
(blue curve), the imaginary classifier still provides the best
results, suggesting that human bias is more valuable than a
single real image.

When we train the standard SVM with five positive ex-
amples, the SVM beats imaginary classifiers alone. How-
ever, by incorporating an imaginary classifier as an orienta-
tion prior into the learning (green curve), the SVM is forced
to find a solution that fits the data while agreeing with the
human visual system, beating all approaches by nearly 5%
AP. These results suggest that transfering the human bias
into machine learning methods can improve object recog-
nition performance. Finally, training on the entire dataset
(purple curve) gives the best results overall. This is to be
expected since large amounts of annotated data is no sub-
stitute for noise. However, in the absence of big data, our
results suggest extracting knowledge from the human visual
system can be powerful.

We show full results for the SVM with orientation pri-
ors in Fig.9. In general, imaginary classifiers are able to
assist the SVM when the amount of positive training data
is only a few examples. In these low data regimes, acquir-
ing classifiers from the human visual system can improve
performance by significant margins, sometimes 10% AP.

4.4. Dataset Generalization

Several recent papers have reported that standard com-
puter vision datasets suffer from dataset biases that harm
cross dataset generalization performance [35, 30]. Unfor-
tunately, there is no known method to fix it (although there
have been several good first attempts [22, 33, 19]). Since the
imaginary classifiers are immune to dataset bias (there is no
dataset) and instead inherit human biases, our approach can
offer some relief.

We trained an SVM classifier with CNN features to rec-
ognize cars on Caltech 101 [14], but we tested it on object
classification with PASCAL VOC 2011. Fig.10a suggest
that, by constraining the SVM to be close to the imaginary
classifier, we are able to improve the generalization perfor-
mance of our classifiers, sometimes over 5% AP. We then
tried the reverse experiment in Fig.10b: we trained on PAS-
CAL VOC 2011, but tested on Caltech 101. While PAS-
CAL VOC provides a much better sample of the visual
world, the orientation priors still help generalization per-
formance when there is little training data available. These
results suggest that incorporating the biases from the human
visual system can help alleviate some dataset bias issues in
computer vision.

5. Bias in the Human Visual System

We have so far examined classifiers acquired from an in-
ternational population, and our results suggest that there is a
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0 positives 1 positive 5 positives
Category Chance Hum SVM SVM+Hum SVM SVM+Hum

car 7.3 27.5 11.6 29.0 37.8 43.5
person 32.3 65.6 55.2 69.3 70.1 73.7

tvmonitor 2.6 23.8 38.6 43.1 66.7 68.8
f-hydrant 0.3 5.9 1.7 7.0 50.1 50.1

bottle 4.5 6.0 11.2 11.7 38.1 38.7

Figure 9: We show AP for the SVM with orienta-
tion priors for object classification on PASCAL VOC
2011 for varying amount of positive data with CNN
features. All results are means over random subsam-
ples of the training sets. SVM+Hum refers to SVM
with the imaginary classifier as an orientation prior.
Green indicates an improvement of at least 1%.
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(a) Train on Caltech 101, Test on PASCAL
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(b) Train on PASCAL, Test on Caltech 101

Figure 10: Since the imaginary classifier is estimated only by humans looking at noise, it tends to be biased towards the
human visual system, and can alleviate some problems in dataset bias. (a) We train an SVM to classify cars on Caltech
101 that is constrained towards the imaginary classifier, and evaluate it on PASCAL VOC 2011. For every training set size,
constraining the SVM to the imaginary classifier with θ ≈ 0.75 is able to improve generalization performance. (b) We train
a constrained SVM on PASCAL VOC 2011 and test on Caltech 101. For low data regimes, the imaginary classifier is able to
again boost performance.

bias from the human visual system that influences the men-
tal images that people imagine. However, everyone does
not necessarily share the same bias with each other.

We found that people from India and the United States
may have different mental images of sports balls. We in-
structed workers on Mechanical Turk to find “sport balls”
in CNN noise, and clustered workers by their geographic
location. Fig.11 shows the imaginary classifiers for both
India and the United States. Even though both sets of work-
ers were labeling noise from the same distribution, Indian
workers seemed to imagine red balls, while American work-
ers tended to imagine orange/brown balls. Remarkably,
the most popular sport in India is cricket, which is played
with a red ball, and popular sports in the United States are
American football and basketball, which are played with
brown/orange balls. We hypothesize that Americans and
Indians may have different mental images of sports balls in
their head and the color is influenced by popular sports in
their country. This effect is likely attributed to phenomena
in social psychology where human perception can be influ-
enced by culture [6, 4]. Since environment plays a role in
the development of the human vision system, people from

different cultures likely develop slightly different images in-
side their head.

This effect can be observed on more categories, some-
times manifesting in subtle ways. We created a classifier
for each country, but this time asked workers to find cars in
CNN noise. Fig.12 shows the distribution of top poses that
each car imaginary classifier finds. Surprisingly, the Amer-
ican imaginary classifier favors left-right facing cars, while
the Singaporeans favor front-back views of cars. This result
suggests that people may different biases in their human vi-
sual system.

6. Discussion
While the ideas in this paper may seem unconventional,

they highlight how human imagination can be a rich re-
source for computer vision systems. Humans are able to
imagine objects under any transformation, even for con-
cepts never before seen. However, creating intelligent vi-
sion machines with the capability to imagine radically new
concepts never before encountered in its data remains a sig-
nificant, open research problem in our field. This paper ex-
plores this direction by showing that it is possible to transfer
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Figure 12: We created an imaginary classifier for each country, and examine the distribution of poses that each classification
image favors. Notice that US workers seem more likely to imagine left/right facing cars, while Singapore workers may favor
imagining front/back facing cars. Please see text for details.

(a) India (b) United States

Figure 11: By instructing workers to classify CNN noise
as a sports ball or not, then creating imaginary classifiers
by country (shown above), we reveal the different mental
images of sports ball (the red/orange circles in the center)
that people from different countries have inside their head.
Indians seem to imagine a red ball, which is the standard
color for a cricket ball and the predominant sport in India.
Americans seem to imagine a brown or orange ball, which
could be an American football or basketball, both popular
sports in the U.S.

classifers extracted from human imagination into a machine
with modest success. Our hope is that our ideas will inspire
future work on building machines with the ability to imag-
ine new visual concepts just like a human.
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an image from its local descriptors. In CVPR, 2011. 3

[40] P. Welinder, S. Branson, P. Perona, and S. J. Belongie.
The multidimensional wisdom of crowds. In NIPS,
2010. 2

10


